Codon usage influences fitness through RNA toxicity
نویسندگان
چکیده
منابع مشابه
Codon Usage Bias Measured Through Entropy Approach
Codon usage bias measure is defined through the mutual entropy calculation of real codon frequency distribution against the quasi-equilibrium one. This latter is defined in three manners: (1) the frequency of synonymous codons is supposed to be equal (i.e., the arithmetic mean of their frequencies); (2) it coincides to the frequency distribution of triplets; and, finally, (3) the quasi-equilibr...
متن کاملSynonymous codon usage influences the local protein structure observed
Translation of mRNA into protein is a unidirectional information flow process. Analysing the input (mRNA) and output (protein) of translation, we find that local protein structure information is encoded in the mRNA nucleotide sequence. The Coding Sequence and Structure (CSandS) database developed in this work provides a detailed mapping between over 4000 solved protein structures and their mRNA...
متن کاملCodon usage and secondary structure of MS2 phage RNA.
MS2 is an RNA bacteriophage (3569 bases). The secondary structure of the RNA has been determined, and is known to play an important role in regulating translation. Paired regions of the genome have a higher G+C content than unpaired regions. It has been suggested that this reflects selection for high G+C content to encourage pairing, but a re-analysis of the data together with computer simulati...
متن کاملCauses and Implications of Codon Usage Bias in RNA Viruses
Choice of synonymous codons depends on nucleotide/dinucleotide composition of the genome (termed mutational pressure) and relative abundance of tRNAs in a cell (translational pressure). Mutational pressure is commonly simplified to genomic GC content; however mononucleotide and dinucleotide frequencies in different genomes or mRNAs may vary significantly, especially in RNA viruses. A series of ...
متن کاملMononucleotide and dinucleotide frequencies, and codon usage in poliovirion RNA.
The polio type 1 (Mahoney) RNA sequence (1) has been analyzed in terms of the distribution of its mononucleotides, dinucleotides and trinucleotides (codons). The distribution of adenosine in the sequence is nonuniform, being lower at the 5' end and higher at the 3' end. The dinucleotide CG is relatively rare and the dinucleotides UG and CA are relatively more common than expected. Codon usage i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2018
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1810022115